Journal cover Journal topic
Primate Biology An international open-access journal on primate research
Primate Biol., 3, 47-50, 2016
http://www.primate-biol.net/3/47/2016/
doi:10.5194/pb-3-47-2016
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review article
07 Sep 2016
Prions
Walter Bodemer German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
Abstract. Prions gained widespread public and scientific interest in the year 2000. At that time, the human neurological Creutzfeldt–Jakob disease (CJD) was known. However, new CJD cases were diagnosed but they could not be ascribed to one of the classical CJD categories i.e. sporadic (sCJD), hereditary or acquired. Hence, they were classified as variant CJD (vCJD). Later on, experimental evidence suggested that vCJD was caused by prions postulated as unique novel infectious agents and, for example, responsible for bovine spongiform encephalopathy (BSE) also known as mad cow disease. The infection of humans by transmission of BSE prions also defined vCJD as a zoonotic disease. Prions, especially those associated with scrapie in sheep had been known for quite some time and misleadingly discussed as a slow virus. Therefore, this enigmatic pathogen and the transmission of this unusual infectious agent was a matter of a controversial scientific debate. An agent without nucleic acid did not follow the current dogma postulating DNA or RNA as inheritable information encoding molecules. Although numerous experimental results clearly demonstrated the infectious capacity of prions in several animal species, a model close to human was not readily available. Therefore, the use of rhesus monkeys (Macaca mulatta) served as a non-human primate model to elucidate prion infection under controlled experimental conditions. Not the least, transmission of BSE, human vCJD, and sCJD prions could be confirmed in our study. Any prion infection concomitant with progression of disease in humans, especially vCJD, could be analyzed only retrospectively and at late stages of disease. In contrast, the prion-infected rhesus monkeys were accessible before and after infection; the progression from early stage to late clinical stages – and eventually death of the animal – could be traced. Because of the phylogenetic proximity to humans, the rhesus monkey was superior to any rodent or other animal model. For these reasons an experimental approach had been conceived by J. Collinge in London and A. Aguzzi in Zurich and performed in a cooperative study with both research groups in the pathology unit of the German Primate Center (DPZ). The study in the DPZ lasted from 2001 until 2012. Our research in the pathology unit provided a temporal monitoring of how an initial prion infection develops eventually into disease; an approach that would have never been possible in humans since the time point of infection with prions from, for example, BSE is always unknown. Telemetry revealed a shift in sleep–wake cycles early on, long before behavioral changes or clinical symptoms appeared. Pathology confirmed non-neuronal tissue as hidden places where prions exist. The rhesus model also allowed first comparative studies of epigenetic modifications on RNA in peripheral blood and brain tissue collected from uninfected and prion-infected animals. To conclude, our studies clearly demonstrated that this model is valid since progression to disease is almost identical to human CJD.

Citation: Bodemer, W.: Prions, Primate Biol., 3, 47-50, doi:10.5194/pb-3-47-2016, 2016.
Publications Copernicus
Download
Short summary
Inheritance by DNA and RNA as genetic elements has been known for decades. However, inheritance by proteins was completely unexpected. Proteins as carrier of genetic information have been identified in yeast where non-Mendelian inheritance could not be explained by transfer of chromosomes (DNA). Prions in yeast helped to understand structure and function of mammalian prions. The rhesus monkey has been found to be a valid animal model for prion infection and the epigenetically controlled disease.
Inheritance by DNA and RNA as genetic elements has been known for decades. However, inheritance...
Share